
直流无刷电机驱动器

1简介

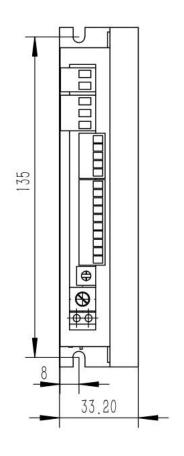
1.1 产品特点

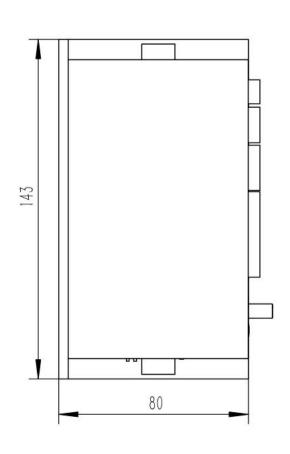
- RS485/UART_TTL控制及参数设定 同步整流/非同步整流控制
- 加/减速 加速度设定
- 最大额定转速设定
- 最大电流输出设定
- 再启动
- 各种报警指示

- 开/闭环控制
 - 内置 / 外接 电位器调速控制
 - 外部模拟信号 / PWM 调速控制
 - 电机堵转力矩保持

2 电气性能及环境指标

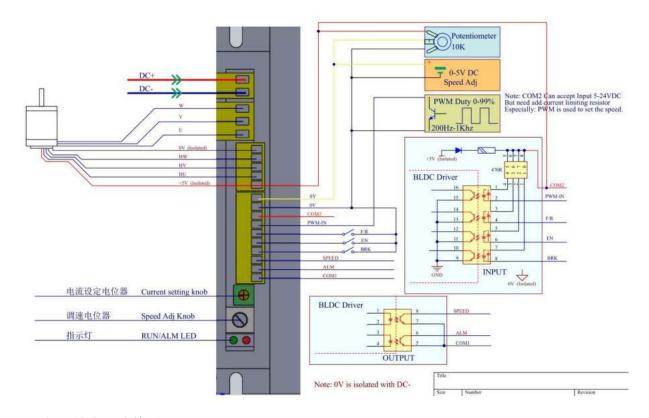
2.1 电气指标


驱动器参数	最小值	额定值	最大值
输入电压 DC(V)	12	48	60
输出电流(A)	-	10	15(<5min)*
使用电机转速(rpm)	100	-	30000
外接调速电位器(kΩ)	-	10	-
外接模拟量调速电压(V)	0	5	5.5
PWM 调速信号电压 (V)	3.3	5	24



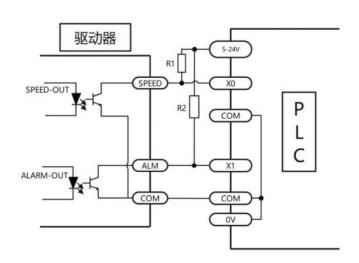
注意:

*驱动器在短时间内(<5min),最大电流可达 15A。峰值电流可达 20A。


3 机械尺寸及安装图(单位:mm)

4驱动器接口及外观示意图

4.1 驱动器接口

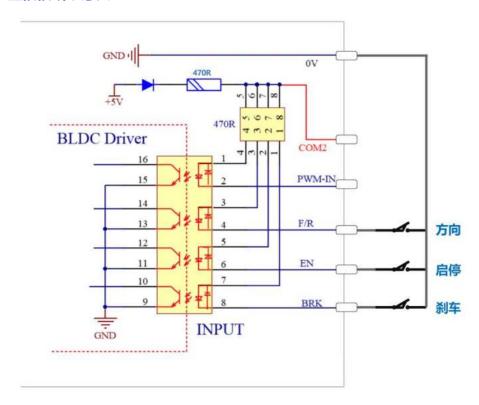


4.2 输入/输出口连接说明

接口	端子	说明
电源	DC+	直流电源输入正极(电压范围 DC24 ~ 60V)。
输入	DC-	直流电源输入负极。
电机	W	直流无刷电机W相。
连接	V	直流无刷电机 V 相。
	U	直流无刷电机 U 相。
	0V	直流无刷电机霍尔信号接地线。
霍尔	HW	直流无刷电机霍尔信号 HW。
信号	HV	直流无刷电机霍尔信号 HV。
	HU	直流无刷电机霍尔信号 HU。
	+5V	直流无刷电机霍尔信号电源线。

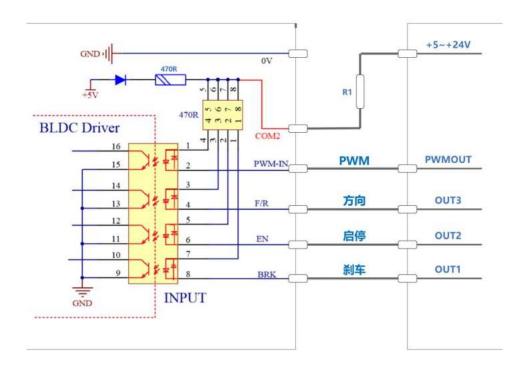
	SV	① 外接调速电位器; ② 外部模拟信号调速输入;						
	0V	公共端口 (OV 参考电平)。						
控制	COM2	隔离输入信号的正端(驱动器接口及外观示意图)。① 不接线,用内部+5V 电源供电;②接输入5-24VDC 但需要加限流电阻;						
信号	PWMIN	PWM 调速信号输入。						
18 3	DIR	DIR 端与 OV 端断开或高电平输入时电机正转,短接或低电平输入电机反转。						
	EN	EN 端与 OV 端断开或高电平输入时电机缓慢停车,短接或低电平输入时电机运行。						
	BRK	BRK 端与 0V 端断开或高电平输入时,当停止信号有效,电机自由停止。短接或电平输入时,当停止信号有效,电机快速停车。						
		与电机的运行转速相应,输出相对应的脉冲频率。利用 SPEED-OUT 可以计算出电机的转速。计算公式为:						
		N(rpm)= (F/P)×60 X ms						
	SPEED	F: 输出脉冲频率(Hz)。P: 电动机极对数。						
输出		N: 电动机转速。例: 电机 4 对极,						
信号		X = 2ms _o F = 1sec / 2ms = 500Hz						
		$N(rpm) = (500 / 4) \times 60 = 7500$						
	ALM	电机或驱动控制故障信号输出信号, 正常为高电平, 出现故障时电平为低电平。						
	COM1	输出信号公共端。						

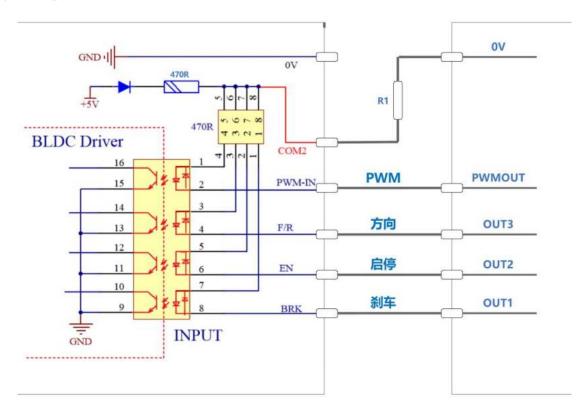
4.3 输出信号与 PLC 接线示意图


当电机出现过流、Hall 输入错误、堵转、过温、过压等情况的时候,驱动器便发出报警信号。此时故障报警输出端 (ALM)与公共端 (COM) 将断开,从而使故障报警输出端 (ALM)成为高电平,与此同时驱动器停止工作,报警灯闪烁。

注意:

12V 上拉电阻 R1/R2 – 1KΩ 24V 上拉电阻 R1/R2 – 2KΩ


4.4 输入接口直接接线示意图


4.5 输入接口与PLC 接线示意图

由于采用了双向的光耦隔离器件, COM2 端可接+5~+24V, 也可接 0V。

▶ 共正示意图

▶ 共地示意图

注意:

COM2 端要接限流电阻 12V R1 – 1KΩ 24V R1 – 2KΩ。

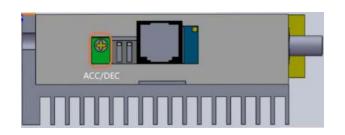
5 功能选择设定与运行

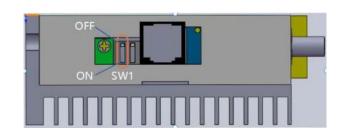
5.1 加/减速 加速度设定

通过电位器 ACC / DEC

设置电机加/减速的加速度。

顺时针旋转, 增加加速度。


逆时针旋转, 减少加速度。


5.2 同步整流和非同步整流设定

在驱动器电源为电池的情况下,为了 降低驱动电路续流损耗和提高在电池 供电的应用场合的续航能力,可通过 SW1 开启或关闭同步整流功能。

ON = 同步整流

OFF = 非同步整流

注意:

在电机启动前,此按键有效,在电机启动后,此按键无效。在同步整流模式下,电机减速会造成驱动器母线电压升压,建议只在电池供电时使用同步整流模式。否则可能会损坏供电设备。

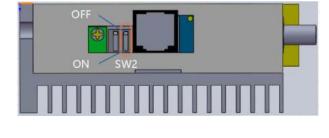
5.3 开/闭环控制设定

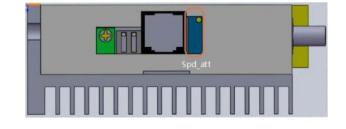
通过SW2选择开、闭环控制。

ON = 闭环控制

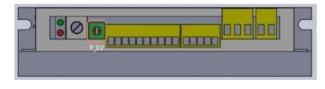
OFF = 开环控制

注意:

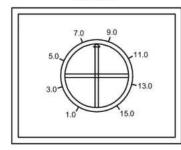

在电机启动前, 此按键有效, 在电机启动后, 此按键无效。


5.4 电机额定转速设定

通过电位器 Spd_att 设置驱动器的额定转速,顺时针增加,逆时针减少。设定范围为 100 – 30000 rpm


5.5 峰值输出电流设定

通过 P-sv 电位器设定峰值输出电流, 当负载突然变大的场合,输出电流将



限定于设定值,降低电机转速,保护电机不被损坏。请按照右图的刻度设置峰值电流。由于设定峰值输出电流与实际峰值输出电流的误差约±10%。为了安全起见,请适当地调小峰值输出电流。

P-sv Tune

Peak Curren

注意:

当负载突然变大的场合,峰

值电流限定时间为 3S。超过 3S,如果负载依旧走高,驱动器将停止工作。2 秒后,再起动功能将启动。

5.6 堵转输出电流限定

当电机堵转时,输出电流将会被限定在峰值输出电流,保护驱动器和电机不被损坏。

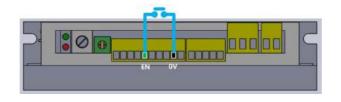
5.7 堵转力矩保持功能

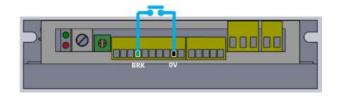
当电机堵转时, 具有简易的力矩保持功能。

注意:

堵转保持力矩是短时间行为, 请勿用于制动堵转

5.8 再起动功能


当电机堵转等情况时,驱动器将停止工作。2 秒后,驱动器将自动起动。再起动之后,在 2min 之内,如果又发生故障,将会报警,保护功能启动,停止工作。正常运行 2min 之后,再启动功能再次生效。


5.9 启动与停止

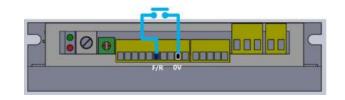
▶ FN 端子启动

当 EN 端和 OV 端连接时, 电机运行。 通过在 OV 与 EN 之间接入开关或使用 PLC 等控制其通断, 即可实现电机启 动与停止的切换。

▶ BRK 端子控制自然停止/快速停止 当 BRK 端与 OV 端连接时,驱动器停止 指令有效时,电机快速停止,否则,

自然停止。

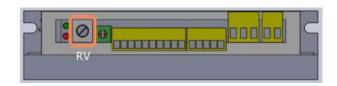
5.10 方向控制


连接或断开 F/R 端和 ()V 端的连接线 可控制电机的正反转。

当断开 F/R 端和 OV 端的连接线时,

电机反转。

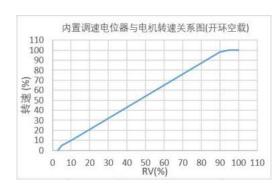
当连接 F/R 端和 OV 端的连接线时,

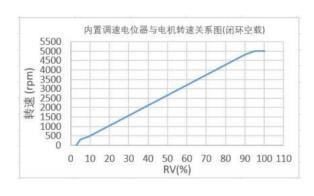

电机正转。

6 调速方法的选择与设置

6.1 使用内置电位器

顺时针旋转内置调速电位器 RV. "咔" 一声后, 电机开始运行。继续顺时针 旋转, 电机速度增大。逆时针旋转内 置调速电位器 RV, 电机速度减小;


继续逆时针旋转至"咔"一声后的极限位置。此时内置调速电位器 RV 已关闭, 电机停止运行。


注意:

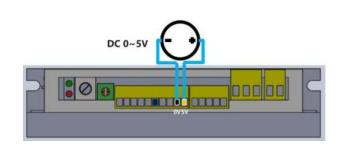
当需要切换到外部 SV 输入控制转速模式时,内置调速电位器 RV 必须处于关闭状态。 即将内置电位器 RV 逆时针旋转至"咔"一声后的极限位置。

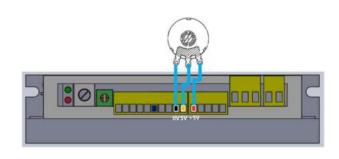
假设: 电位器 Spd_att 设置驱动器的额定转速为 5000rpm, 那么:

内置调速电位器与电机转速关系图(开环空载)内置调速电位器与电机转速关系图(闭环空载)

6.2 使用外部电位器调速

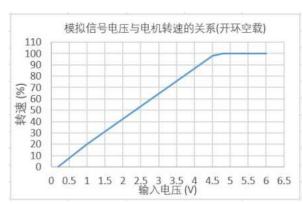
使用外部调速电位器调速时,请使用电阻值为 10KΩ 的适合电位器。电位器中间引出端连接 SV 端,两侧的引出端分别连接

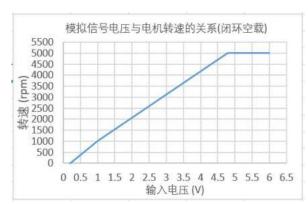

注意:


当需要切换到外部 SV 输入控制

转速模式时,内置电位器 RV 必须处于关闭状态。即将内置电位器 RV 逆时针旋转至"咔"一声后的极限位置。

6.3 使用外部模拟信号调速 DC 0~5V


当需要切换到外部 SV 输入控制转速模式时, 内置电位器 RV 必须处于关闭状态。即将内 置电位器 RV 逆时针旋转至"咔"一声后的 极限位置。



假设: 电位器 Spd_att 设置驱动器的额定转速为 5000rpm, 那么:

模拟信号电压与电机转速的关系(开环空载) 模拟信号电压与电机转速的关系(闭环空载)

当输入电压大约为 0.3V 时, 电机速度为最高速度的 4%; 当输入电压大约为 4.7V 时, 机电的速度为最大值。 的速度

的最 当输入电压大约为 0.3V 时,电机速度为时, 100rpm;当输入电压大约为 4.7V 时,电机的速度为 5000rpm。

6.4 使用 PWM 调速

频率范围为: 200Hz-1KHz

幅值为 5~24V, 超过 5V 时,

需加限流电阻。

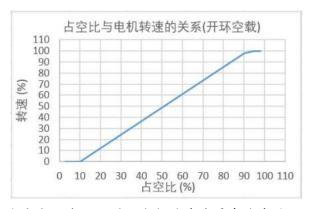
注意:

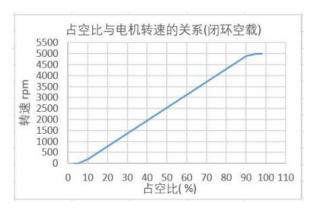
当需要切换到外部 SV 输入

控制转速模式时,内置电位器 RV 必须

处于关闭状态。即将内置电位器 RV 逆

时针旋转至"咔"一声后的极限位置。PWM 幅值大于 5V 是,一定要接限流电阻,否则会损坏光耦隔离。


假设: 电位器 Spd att 设置驱动器的额定转速为 5000rpm, 那么:


占空比与电机转速的关系(开环空载)

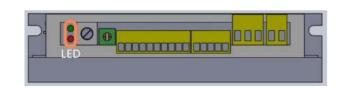
占空比与电机转速的关系 (闭环空载)

频率: 200Hz~1KHz

000

PWM 电路

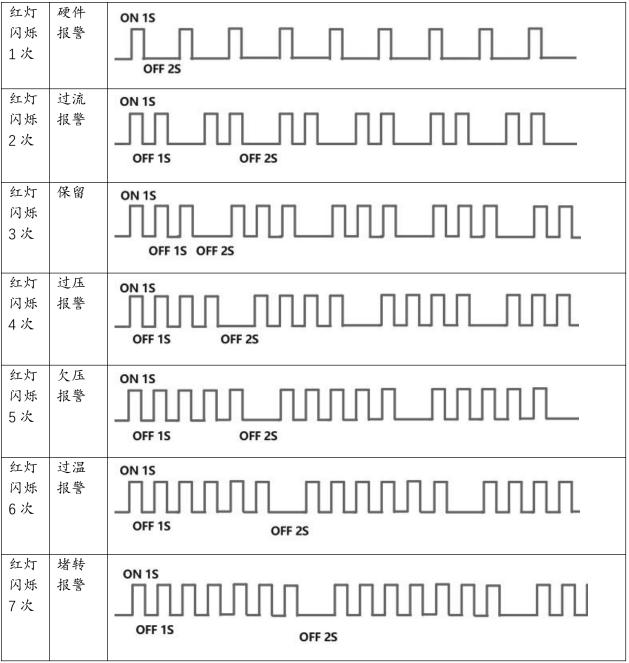
当占空比为 10% 时, 电机速度为最高速度的 当占空比为 10% 时, 电机转速 100RPM; 当 4%; 当占空比 99%时, 电机的速度为最大值。 占空比 99% 时, 电机的速度为最高转速, 最高速度值取决于电机规格和电源电压。 5000RPM。


7状态指示及异常处理

7.1 绿灯(运行指示灯)

当驱动器待机时,绿灯亮一秒灭一秒,

说明驱动器状态正常。


当电机运行时,绿灯常亮。

7.2 红灯(错误指示灯)

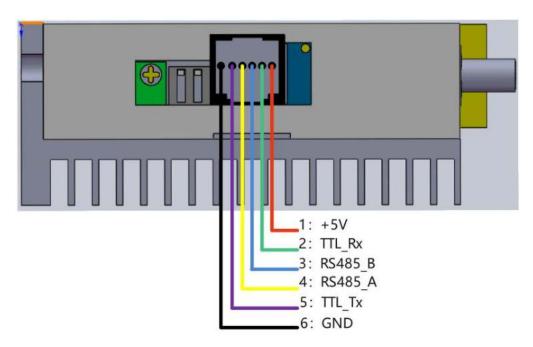
当驱动器错误时, 红灯闪烁错误指示。

错误	状态	LED 表示详细
指示	说明	

7.3 异常处理

状态说明	LED 表示详细
硬件报警	请确定电机负载是否过大。
过流报警	请确定电机负载是否过大。
保留	
过压报警	请检测母线电压。
欠压报警	请检测母线电压。
过温报警	驱动器运行时间过长,需停机冷却。

7.4 错误清除方式


可通过断开 EN 端与 OV 端的接线,即可清除错误,进入待启动状态。

8 通信控制(RS485 / UART_TTL)

8.1 通信控制说明

驱动器支持 RS485 或 串口通信功能, 通信协议为 modbus 协议, 可以控制电机启停, 方向, 转速, 极对数等。注意: RS485 和 串口不能同时接入驱动器。

8.2 通信控制图示

8.3 通信硬件配置:

波特率: 9600 bps。

数据位:8。

停止位: 1。

校验位: 无。

8.4 通信指令一览

功能 指令(16 进制) 说明及注意事项

进入 PC 端控 制模式	发送	01 06 60 01 00 01 07 CA	进入 PC 端控制模式后,驱动器的 EN 端、F/R 端、BRK 端无效,此时,只能通过 PC 端控制
	接收	01 06 60 01 00 01 07 CA	驱动器的启停、方向、速度、极对数等。
退出 PC 端控	发送	01 06 60 01 00 00 C6 0A	退出通信模式后,驱动器外部信号立即有效, 在退出通信模式之前,请检查外部输输入接口
制模式	接收	01 06 60 03 00 01 A6 0A	的接线情况。
方向:正转	发送	01 06 60 03 00 01 A6 0A	设定电机方向为正转
	接收	01 06 60 03 00 01 A6 0A	
方向:反转	发送	01 06 60 03 00 00 67 CA	设定电机方向为正转
	接收	01 06 60 03 00 00 67 CA	
设置转速为 1000rpm	发送	01 06 60 04 03 E8 D6 B5	设定电机转速为 1000rpm,其中 03 E8 为 16 进
	接收	01 06 60 04 03 E8 D6 B5	制,等于 1000rpm,设定其他转速于此类推。
启动	发送	01 06 60 02 00 01 F7 CA	电机启动,如果转速未设定时,电机不会启动。在启动之前请设定电机转速。
	接收	01 06 60 02 00 01 F7 CA	炒。 仁 归 炒 之 刖 焆
停止	发送	01 06 60 02 00 00 36 0A	电机停止,如果驱动器有错误报警,发送此指令,可清除错误报警,进入待启动状态。
	接收	01 06 60 02 00 00 36 0A	マ, 7 / / / / / / / / / / / / / / / / / /
更改极对数 为 2 对极	发送	01 06 10 01 00 02 BB AA	更改电机极对数, 00 02 为 2 对极, BB AA 为 份校验码, 在任何参数下都有用。
73 Z 71 10X	接收	01 06 10 01 00 02 5D 0B	以仅型码, 在下门今效下部有用。
保存参数	发送	01 06 60 00 00 01 BB AA	保存全部参数,此指令只在驱动器待待机状态 有效,电机运行时无效。
	接收	01 06 60 00 00 01 BB AA	万双, 它和达11 时 / 2 X 。
恢复出厂	发送	01 06 60 00 00 03 D7 CB	全部参数恢复出厂默认,此指令只在驱动器待待机状态有效,电机运行时无效。
	接收	01 06 60 00 00 03 D7 CB	17 404人心有效,也如此们则儿效。

8.5 驱动器全部参数

地址	默认值	取值范围	单位	说明
0x1000	1	1-255		//0, 驱动器地址。
0x1001	4	1-50	对	//1, 电机极对数。
0x100E	5	2-50	ms	//14, 运行 PID 计算频率。
0x100F	50	10-1000		//15,速度环闭环运行比例系数 P 值。
0x1010	500	10-1000		//16,速度环闭环运行积分系数 值。

0x1022 3 0-3 //34, 电压欠压过压检测, 0, 不检测, 1, 检测欠压, 2, 检测过压, 3检测过压和欠压。

0x1023	1000	>1000	x10mV	//35, 欠压电压值。
0x1024	6200	<6200	x10mV	//36, 过压电压值。
0x1025	1	0-3		//37, 过热保护使能与否, 0—不使能, 1—使能。
0x1026	50	40-50	°C	//38,过热保护值。
0x1028	2000	0-5000	ms	//40, 堵转检测时长, 超过此值, 驱动器将报警为堵转。
0x1029	1	0-1		//41,是否允许错误重启,0—不允许、1—允许。
0x102A	1	0-10	次	//42, 错误重启次数, 错误重启次数超过此值时, 驱动器将不会重启, 此时, 需要断开 EN 端口与 OV 端的接线, 解除错误。
0x102B	2000	0-32767	ms	//43, 错误报警时, 重启等待时长。
0x102C	120	0-32767	S	//44, 正常运行时长, 电机正常运行时长超过此值, 将重 置重启次数。

Modbus 简易说明:

修改驱动器极对数为2对极: (以下数字全部为16进制)

则发送: 01 06 10 01 00 01 BB AA

地址 功能码 寄存器 数值 (校验码)(伪校验 BB AA 在任何时候都有效)

返回: 01 06 10 01 00 01 XX XX (校验码)

地址 功能码 寄存器 数值 (校验码) (伪校验 BB AA 在任何时候都有效)

要查询驱动器当前极对数: (以下数字全部为16进制)

则发送: 01 03 10 01 00 01 BB AA

地址 功能码 寄存器 查询个数 (校验码)(伪校验 BB AA 在任何时候都有效)

返回: 01 03 02 00 04 XX XX (校验码)

地址 功能码 返回个数 寄存器值 (校验码)(伪校验 BB AA 在任何时候都有效)

其中的0004=4 为4对极。

修改或查询驱动器参数,可参考上面的例子。

8.6 驱动器全部状态寄存器

地址	单位	说明
0x2000	0-1	//0, 驱动器当前状态。0-待机,1-运行中。
0x2001	rpm	//1, 电机当前转速。
0x2002	1-6	//2, 电机当前霍尔值。
0x2003	x10mV	//3, 驱动器当前电压。
0x2004	x10mA	//4, 驱动器当前电流。
0x2005	0-7	//5, 驱动器当前错误。
0x2006	°C	//6, 驱动器当前温度。
0x2007	0-32767	//7, P-sv 电位器当前值。
0x2008	0-32767	//8, Spd_att 电位器当前值。
0x2009	0-32767	//9,ACC/DEC 电位器当前值。
0x200A	CW/CCW	//10, 电机当前方向。

要查询驱动器当前温度: (以下数字全部为16进制)

则发送: 01 03 20 06 00 01 BB AA

地址 功能码 寄存器 查询个数 (校验码)(伪校验 BB AA 在任何时候都有效)

返回: 01 03 02 00 1E XX XX(校验码)

地址 功能码 返回个数 寄存器值 (校验码)(伪校验 BB AA 在任何时候都有效)

其中的 00 1E = 30 。为 30 摄氏度。

查询驱动器状态, 可参考上面的例子。

8.7 举例用 PC 端,控制 2 对极电机在正方向以 1000rpm 运行。

发送步骤		指令(16 进制)	说明及注意事项
1、进入PC	发送	01 06 60 01 00 01 07 CA	必须进入 PC 端控制模式,以下指令才有效。
端控制模式	接收	01 06 60 01 00 01 07 CA	
2、方向:正转	发送	01 06 60 03 00 01 A6 0A	设定电机方向为正转
	接收	01 06 60 03 00 01 A6 0A	
3、设置转速	发送	01 06 60 04 03 E8 D6 B5	设定电机转速为 1000rpm。

为 1000rpm	接收	01 06 60 04 03 E8 D6 B5	
4、更改极对	发送	01 06 10 01 00 02 BB AA	更改电机极对数。
数为2对极	接收	01 06 10 01 00 02 5D 0B	
5、启动	发送	01 06 60 02 00 01 F7 CA	电机启动,如果转速未设定时,电机不会启动。在启动之前请设定电机转速。
	接收	01 06 60 02 00 01 F7 CA	勿。 在 石 功 之 刖 焆 以 足 它 机 特 还 。
6、停止	发送	01 06 60 02 00 00 36 0A	电机停止。
	接收	01 06 60 02 00 00 36 0A	
7、退出 PC	发送	01 06 60 01 00 00 C6 0A	退出通信模式后,驱动器外部信号立即有效,
端控制模式	接收	01 06 60 03 00 01 A6 0A	在退出通信模式之前,请检查外部输输入接口的接线情况。

```
8.8 校验码计算
第一个参数是要计算的字符串,第二个参数是要计算的字符长度
例如要计算 01 06 10 04 00 01 (CRCL? CRCH?), 示例如下
/* int SendLen;
   Uart.T_DATA[0]=0x01;Uart.T_DATA[1]=0x06;
   Uart.T_DATA[2]=0x10;Uart.T_DATA [3]=0x04;
   Uart.T_DATA[4]=0x00;Uart.T_DATA[5]=0x01;
   SendLen=6;
   Uart.TxCRC= CRC(Uart.T_DATA,SendLen);
   Uart.T_DATA[SendLen]= Uart.TxCRC&0x00FF; //CRC 先低位再高位
   Uart.T_DATA[SendLen+1]= Uart.TxCRC>>8; */
unsigned int CRC(unsigned char *snd, unsigned char num){
  unsigned char i, j;
  unsigned int c,crc=0xFFFF;
  for(i = 0; i < num; i ++){
    c = snd[i] & 0x00FF;
    crc \land = c;
    for(j = 0; j < 8; j ++){
      if (crc & 0x0001){
```

```
crc>>=1;
    crc^=0xA001;
}
    else crc>>=1;
}
return(crc);
}
```